Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-Object Tracking

نویسندگان

  • Sarthak Sharma
  • Junaid Ahmed Ansari
  • J. Krishna Murthy
  • K. Madhava Krishna
چکیده

This paper introduces geometry and object shape and pose costs for multi-object tracking in urban driving scenarios. Using images from a monocular camera alone, we devise pairwise costs for object tracks, based on several 3D cues such as object pose, shape, and motion. The proposed costs are agnostic to the data association method and can be incorporated into any optimization framework to output the pairwise data associations. These costs are easy to implement, can be computed in real-time, and complement each other to account for possible errors in a tracking-by-detection framework. We perform an extensive analysis of the designed costs and empirically demonstrate consistent improvement over the state-of-the-art under varying conditions that employ a range of object detectors, exhibit a variety in camera and object motions, and, more importantly, are not reliant on the choice of the association framework. We also show that, by using the simplest of associations frameworks (two-frame Hungarian assignment), we surpass the state-of-the-art in multi-objecttracking on road scenes. More qualitative and quantitative results can be found at https://junaidcs032.github. io/Geometry_ObjectShape_MOT/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Novel Concept of Potential Pixel Energy for Object Tracking

Abstract   In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

A Time-Domain Method for Shape Reconstruction of a Target with Known Electrical Properties (RESEARCH NOTE)

This paper uses a method for shape reconstruction of a 2-D homogeneous object with arbitrary geometry and known electrical properties. In this method, the object is illuminated by a Gaussian pulse, modulated with sinusoidal carrier plane wave and the time domains’ footprint signal due to object presence is used for the shape reconstruction. A nonlinear feedback loop is used to minimize the diff...

متن کامل

Real Time Face and Hand Tracking With Correlation

In this paper, we demonstrate an effective tracking system for moving face and hand objects in real time. Our approach contains of three substages: adaptive background subtraction, face and hand detection using skin color and tracking them with pixels correlations respectively. There are famous robust tracking methods such as mean shift and active shape model in the literature. Despite providin...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09298  شماره 

صفحات  -

تاریخ انتشار 2018